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Abstract 
Researchers have developed cognitive systems capable of human-level performance at complex 
tasks, but constructing these systems required substantial time and expertise. To address this 
challenge, a new line of research has begun to coalesce around the concept of cognitive systems that 
users can teach rather than program. A key goal of this research is to develop natural approaches for 
end users to directly train these systems to perform new tasks. However, there does not currently 
exist a language for describing the key components of cognitive system training interactions and 
how these components relate to the concept of naturalness for end users. This paper begins to explore 
this gap. To lay the foundation for this exploration, we review relevant prior machine learning and 
interaction frameworks as well as the human-computer interaction literature to identify 
characteristics of systems that have historically been natural for end users to interact with. Based on 
this review, we propose the Natural Training Interactions (NTI) framework, which decomposes 
cognitive system training interaction into patterns, types, and modalities, all of which support the 
acquisition of different kinds of knowledge. Finally, we discuss how this framework characterizes 
existing research within this space and how it can guide future research. 

1.  Introduction 
In recent years, there has been a growth of research and development in the area of cognitive 
systems (Langley, 2012), with prior demonstrations showing that it is possible for cognitive 
systems to achieve human-level performance at complex tasks (e.g., Jones et al., 1999; Mcdermott, 
1980). However, cognitive systems still remain largely out of reach for the general public (Laird et 
al., 2017). A major factor contributing to this disconnect is that our daily lives are filled with a wide 
range of tasks across multiple domains, whereas today's state-of-the-art cognitive systems are 
implemented to perform specific tasks in specific domains. Extending specialized cognitive 
systems to support a wider range of tasks requires substantial time and expertise. For example, the 
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base IBM Watson system that famously beat two Jeopardy! champions required over a century of 
artificial intelligence expert development time. 
 To address this challenge, cognitive systems researchers have begun exploring approaches for 
users to create and extend the capabilities of cognitive systems by teaching them, rather than by 
programming them. This emerging area of research, which includes approaches such as Interactive 
Task Learning (Kirk & Laird, 2014; Laird et al., 2017) and Apprentice Learning (Maclellan, 2017; 
Maclellan, Harpstead, Patel, & Koedinger, 2016), aims to develop the computational and cognitive 
theory needed for building systems that support natural interactions and that possess general 
capabilities for learning across a wide range of domains and contexts. Similar to how research and 
development on computing hardware enabled the transition from corporate mainframes to personal 
computers, this research area aims to support the transition from monolithic cognitive systems (e.g., 
Watson) to personal cognitive systems (e.g., companion agents, Forbus & Hinrichs, 2006). 
 The literature contains several examples of teachable cognitive systems (Hinrichs & Forbus, 
2014; Kirk & Laird, 2014; Maclellan et al., 2016) and each one implicitly instantiates a training 
paradigm. However, we lack a common language for discussing existing training paradigms, 
engaging in scientific discourse over their structures, and for supporting the systematic translation 
and reuse of their components. In this paper, we take the first steps towards creating such a 
language, which we present in the form of a framework. Additionally, prior work has generally 
focused on the perspective of the learning agent and its mechanisms rather than the teaching user 
and their interactions. Instead, we adopt a user-centered approach for teaching cognitive systems 
and center our framework around the question of what makes training interaction natural for human 
teachers. In doing so, we draw on the human-computer interaction perspective that an 
understanding of interaction is central to the design and development of usable technology. 
Ultimately, we intend this work to lay the foundation for the development of personal cognitive 
systems that users can naturally teach. 

2.  Why a Framework? 

The notion of decomposing human-agent interactions using a framework is not novel in itself and 
several decompositions exist in the literature (Bartneck & Forlizzi, 2004; Laird et al., 2017; 
Sheridan, 1992). However, we have found that existing frameworks provide an insufficient 
theoretical and practical basis for describing existing teachable cognitive systems and ultimately 
for designing novel cognitive system training paradigms that are natural and efficient for end users. 
 For example, one of the most common distinctions in the machine learning literature is between 
supervised, unsupervised, and semi-supervised approaches (Bishop, 2016). While this distinction 
appears to refer to the amount of training required by users and to map each level of supervision to 
the appropriate class of learning algorithms, the classical supervision dimension is actually 
independent of the user—it distinguishes on whether there are privileged attributes (typically 
prediction attributes) and whether ground truth values are available for them. From a cognitive 
system design perspective, it is possible to use supervised approaches without user involvement, if 
ground truth labels are available by other means, and unsupervised approaches with user 
involvement, if the user is annotating examples. Thus, these traditional distinctions are misaligned 
for providing guidance on the design of cognitive system training paradigms. Other traditional 
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machine learning distinctions, such as incremental vs. non-incremental or classification vs. 
regressions, suffer from similar problems—whether a system is using one approach or another is 
largely indistinguishable to users. In general, these kinds of machine-learning distinctions place the 
emphasis on the learning mechanisms rather than on the user and their training interactions. 

A more relevant decomposition comes from Laird et al.’s (2017) review of interactive task 
learning, which divides task learning approaches by the mode of communication (natural language 
or demonstration) and the type of knowledge taught (goals, concepts, actions, and procedures). We 
view these distinctions as much more practical for cognitive system design because they better 
align with training interaction design choices (e.g., which modality a user experiences). 
Additionally, this distinction provides a basis for constructing theoretical hypotheses regarding the 
relationship between modality and type of knowledge being transferred. However, we claim that 
more guidance is needed. For example, this prior work provides little discussion regarding how to 
structure training of particular kinds of knowledge within particular modes. What is needed are 
additional components to describe when and how the user and system should act in different 
situations, such as interaction patterns. Additionally, we argue that Laird et al.’s modality should 
be further distinguished between the type of interaction being performed and the modality it takes 
because it is possible for interactions to be communicated via different modalities, such as a 
demonstration (an interaction type) being communicated using sketch, speech, or a graphical user 
interface (different modalities).  

Another related line of work is Bartneck and Forlizzi’s (2004) human-robot interaction 
framework, which has categories for patterns—called norms—and modalities. However, this 
framework focuses on robot’s social interactions with humans more generally, rather than training 
interactions specifically, and so does not have dimensions for the types of knowledge being taught 
as seen in Laird et al.'s (2017) review. Additionally, like the Laird et al. work, it lacks a dimension 
for interaction types, which we claim provides an important intermediate layer of abstraction 
between patterns and modalities. Finally, as their work emphasizes physical robotics it also contains 
dimensions that are related to a robot's physicality (e.g., whether the robot’s form is abstract or 
anthropomorphic). Our work is less concerned with the physical embodiment of agents, but it is 
not incompatible with our current thinking.  

We also believe it is worth mentioning Sheridan's (1992) supervisory control framework and 
VanLehn's (2006) model of tutoring system behavior because they provide a broader context for 
training interactions. In particular, Sheridan views “teaching” as an important component of 
effective human supervisory control systems, along with “planning”, “monitoring”, “intervening” 
and “learning.” However, his work primarily describes teaching as the process by which a human 
supervisor directly programs a system with the desired knowledge. Our work aims to provide a 
means by which human operators might more naturally teach a system without the technical 
knowledge necessary to program it—ultimately enabling the creation of more effective supervisory 
control systems. In contrast to Sheridan’s work, which explores the situation of a human teacher 
and a machine student, VanLehn describes the behavior of computer tutoring systems that teach 
human students. His work distinguishes between the outer teaching loop, where a teacher models 
student knowledge over time and selects problems for a student to perform that appropriately 
challenge their current abilities, and the inner teaching loop, where a teacher provides immediate 
instruction and guidance to students regarding how to correctly complete each problem. In general, 
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our current work focuses primary on the inner teaching loop—or the training interactions with a 
system on a situational basis—and does not attempt to characterize how a teachable system should 
situates within the outer teaching loop, which would include estimating system knowledge or 
deliberately select training problems, or within supervisory control more broadly, which would 
include additional issues such as monitoring and control. However, we do acknowledge that any 
teachable system will ultimately be embedded within these greater contexts. 

Given the context of this prior work, our goals in proposing a new framework are three fold. 
First, we hope to draw attention to the exciting nexus of cognitive system and human-computer 
interaction research, which ultimately has the potential to increase the accessibility and broader 
adoption of cognitive systems technology. Second, we aim to provide a common language for 
describing cognitive system training interactions that enables the framing of hypotheses regarding 
which means of training are more natural and efficient for end users in different situations. Finally, 
we intend our framework to support the design of cognitive systems by defining the space of 
training interactions components that can be translated and reused across different systems. While 
many existing frameworks share commonalities with the one we propose here, their focus is either 
more general (interaction broadly) or directed toward different kinds of interaction (non-training 
interactions). Thus, we aim to combine the best of these prior ideas in our framework and present 
a novel perspective on interaction that is better aligned with our high-level goal of building 
cognitive systems that are natural for end users to train. 

3.  What Makes an Interaction Natural? 

In order to create an initial framework for natural training interactions, we must first contend with 
what it means for an interaction to be natural. While it is common to think of gesture and speech as 
lending naturalness to an interaction, the prior literature highlights that an interaction is not 
necessarily natural by virtue of its physical modality. Norman (2010) argues that so called natural 
user interfaces (e.g., speech- and gesture-based) are not inherently more natural than graphical user 
interfaces (e.g., screen-based widgets). For example, gestural interfaces lack the affordances to let 
users know what gestures they support, whereas graphical user interface widgets, such as buttons, 
readily advertise their supported interactions. In general, this work suggests that the naturalness of 
a modality alone is neither necessary nor sufficient for making an overall interaction natural. 

Given that naturalness does not derive from modality, then what makes interaction natural? To 
address this question, we reviewed the HCI literature on natural interactions and identified four 
common characteristics of systems that support naturalness: they (1) support the goals of users, (2) 
do what users expect, (3) lets users work the way they want, and (4) leverage users' experience to 
minimize training. In this section, we review each of these characteristics. 

Supports the goals of users. Systems supporting natural interactions should be able to support 
what users want to do (i.e., their goals). One temptation in developing these systems is to 
overemphasize ease of use at the expense of limiting what users can achieve. Myers, Hudson, and 
Pausch (2000) refer to this balance as the threshold and ceiling of tools. Thresholds refer to the 
barriers a user must overcome to use a tool, whereas the ceiling describes what the tool enables 
users to do. Many systems attempting to support natural interactions emphasize a low threshold, 
but often ignore the ceiling. For example, it is easy to interact with Apple's Siri, but it only supports 
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built-in commands—it is unable to learn new commands. To overcome this risk, systems should be 
developed with end-user goals and intents in mind (e.g. the desire to teach Siri new user-defined 
commands), so that the developers can ensure the system does not limit users' capabilities. 
Typically, increasing the generality of a learning system comes at the cost of reduced system 
robustness; however, a key point of this prior work is that developers can strike a better balance 
between these two outcomes by building systems to support the right subset of users goals, rather 
than simply supporting more goals. 

Does what users expect. A common theme in research on natural interactions is an emphasis on 
the expectations users have for a system (Myers, Pane, & Ko, 2004). Humans typically follow 
patterns, scripts, or norms when engaging in everyday interactions (Bicchieri, 2006), which make 
it possible for the humans involved in the interaction to know how to respond. For example, tutors 
generally expect that their pupils will attempt to solve problems before asking for help. Systems 
that aspire to naturalness should support naturally occurring patterns of interaction and be aware of 
users’ expectations within these patterns. It is worth noting that these patterns may arise from a 
user's particular cultural background (e.g., what roles their culture ascribes to teachers and students) 
or from their personal experiences (e.g., whether they are a Mac or PC user). Additionally, systems 
attempting to be natural should not require users to learn new (unnatural) patterns of interaction—
deviations from typical scripts make it difficult for users to know what the system will do next and 
how to respond accordingly. 

Lets users work the way they want. Given that natural systems support users’ goals they should 
also let users execute those goals the ways they prefer or expect to. A key idea from the ubiquitous 
computing literature is that computing systems should become invisible because they seamlessly 
support the ways users want to do something (Weiser & Brown, 1996). They should not impede 
users or force them to achieve goals in unpreferred ways. For example, a common trend is to build 
systems around a speech interaction paradigm, but there are many situations where speech is an 
unnatural form of communication. In his study of architectural designers, Schön (1983) found that 
sketches of designs often better supported communication and reasoning than verbal articulations. 
This finding suggests that systems aiming to support natural architectural design should prefer 
sketch-based interactions over speech. 

 Leverages users experience to minimize necessary training. One of the most pervasive ideas 
within research on natural user interfaces is the idea of instant expertise (Wigdor & Wixon, 2011), 
or the idea that users should not have to learn how to control a system because the modality used 
is one they have immediate familiarity with. In the words of Buxton (Larsen, 2010), “[natural user 
interfaces] exploit skills that we have acquired through a lifetime of living in the world, which 
minimizes the cognitive load and therefore minimizes the distraction.” Common approaches within 
this space include voice- and text-based natural language and gestural interfaces that take advantage 
of users' lived experiences interacting with other people. Additionally, many users have extensive 
training with artificial interfaces, such as QWERTY keyboards, that may be natural for many 
application contexts, so it is worth noting that these artificial modes of interaction should not be 
discounted. 
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4.  A Preliminary Framework for Cognitive System Training Interactions 

In order to design cognitive systems that support natural training interactions, we require a better 
understanding of how these systems could hypothetically interact. In this section, we propose a 
framework for characterizing cognitive system training interactions—the Natural Training 
Interactions (NTI) framework, see Table 1—that aligns with the four characteristics noted in the 
previous sections. In putting forth this framework, we do not intend for this work to be complete 
but hope that it provides a useful initial language to start talking about naturalness in the context of 
cognitive systems and their instructional interactions with users. 
 At a high-level, the framework is built on the assumption that the goal of training is to change 
some aspect of an agent’s knowledge. To update knowledge, agents and trainers interact according 
to instructional patterns. Within patterns, trainers and agents employ in several types of interaction, 
and these interactions can be done through various modalities. We review each aspect of the 
framework in turn. 
 Knowledge. We make the assumption that the goal of any training interaction is to update the 
learner's knowledge. There are many types of knowledge that might be included in a cognitive 
system. Within the literature, there are several generally accepted types of knowledge (Laird, 
Lebiere, & Rosenbloom, 2017). For our preliminary framework, we include six such kinds of 
knowledge:  
• goals, which fully or partially describe desirable states of the world;  
• beliefs, which represent an agent's current worldview;  
• concepts, which support semantic inference and enable an agent to augment its worldview with 

additional non-observable information;  
• experiences, which organize past situations and problem-solving episodes;  
• skills, which describe procedures for changing the world and updating beliefs; and  
• dispositions, which specify an agent’s problem-solving orientations (e.g., whether to explore 

or exploit).  
Our current focus is primarily on symbolic forms of knowledge arising from interactions with a 
trainer, but future extensions of the framework might also include sub-symbolic knowledge 

Table 1. The natural training interactions framework 

Knowledge Patterns Types Modalities 

• Goals 
• Beliefs 
• Concepts 
• Experiences 
• Skills 
• Dispositions 

• Passive Learning 
• Operant Conditioning 
• Direct Instruction 
• Apprentice Learning 
• After-Action Review 
• Collaborative Learning 
• Programming 

• Command 
• Clarify 
• Acknowledge 
• Inform 
• Spotlight 
• Annotate 
• Reward 
• Demonstrate 
•  Direct knowledge 

manipulation 
• Request <type> 

• Command Line 
• Control device 
• GUI 
• Sketch 
• API 
• Gesture 
• Speech 
• Text 
• Multi-modal 
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(learning probabilistic grammar knowledge for parsing English sentences or equations such as Li, 
Schreiber, Cohen, & Koedinger, 2012). Further, we do not mean to imply that all cognitive systems 
must support all of these knowledge categories but rather that the nature of the knowledge being 
changed will likely dictate choices across the other dimensions of the framework. 
 Patterns. Within human-human instructional settings there are many naturally occurring 
interaction and training patterns. These patterns govern the relationship between trainer and trainee 
and establish the contours for how training interactions play out. Inspired by existing systems 
(Allen et al., 2007; Forbus & Hinrichs, 2006; Hinrichs & Forbus, 2014; Kirk & Laird, 2014; 
Maclellan et al., 2016) and models of instructional practice in humans (Chi & Wylie, 2014; 
Koedinger, Corbett, & Perfetti, 2012), our framework highlights several possible patterns. At its 
most simple, learning could be primarily passive, with agents observing training behaviors without 
agency or active input from instructors. Increasing complexity, agents can have some control over 
their actions and receive rewards from an instructor (operant conditioning) or instructors can 
explicitly coach an agent, without requiring agent decision making (direct instruction). An even 
more complex pattern, apprentice learning (Maclellan et al., 2016), incorporates aspects of both 
approaches—both explicit instruction and feedback on agent actions. Additionally, many other 
instructional patterns are possible, such as after-action review, where a trainee reviews past 
experiences and an instructor provides complementary instruction, collaborative learning (Olsen, 
Belenky, Aleven, & Rummel, 2014) where both actors are trainees and learning from one another, 
and even programming, which consists of directly manipulating knowledge structures and is 
probably the most prevalent human-computer training pattern. 
 Types. Within a pattern, an instructor and trainee engage in many types of interactions. For 
example, within the apprentice learning pattern (Maclellan et al., 2016), an instructor issues a 
command, which specifies the task for an agent to perform. If the agent does not know how to 
perform the task, then it might request a demonstration from the instructor, who provides one. On 
subsequent tasks, the agent might attempt the task (i.e., provide the instructor with a demonstration) 
and request feedback (i.e., a reward) on this attempt. Finally, the instructor provides the agent with 
the appropriate reward. Under this pattern, this process continues until the agent is correctly 
performing all of the tasks. Our framework also includes interaction types for supporting the other 
patterns. For example, Direct Instruction (Hinrichs & Forbus, 2014) allows instructors to directly 
inform agents about the world (“TicTacToe is a two-player game”), spotlight agents attention on 
particular parts of the world (“This [pointing] is a block”), and annotate demonstrations (“This is 
the move action [demonstrate drawing of X on board]”) to facilitate efficient learning.  
 The types listed in Table 1 are drawn from existing systems as well as the literature on 
communicative acts (Allen, Blaylock, & Ferguson, 2002; Traum & Hinkelman, 1992). These 
include: 
• commands, which compel an agent to perform some task or take on some state; 
• clarifications, which disambiguate between competing interpretations or further elaborate or 

grounds prior interactions; 
• acknowledgments, which signal that data has been successfully received and/or processed;  
• inform acts, which provide an agent with additional information in addition to perception; 
• spotlighting, which identifies certain elements in the environment as relevant or important; 
• annotations, which augment an agent’s current understanding with additional learning related 

information, such as skill labels or which elements of an example should be generalized; 
• rewards, which consist of correctness feedback or a numerical reward; 
• demonstrations, which are examples of behavior; 
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• direct knowledge manipulation; which describe new knowledge structures or changes to 
existing structures; and,  

• request <type>, which are requests to provide any of the above types. 
This is not meant to be an exhaustive list, but is representative of the types that commonly occur in 
current practice. It is important to note that when we refer to interaction types we are interested in 
the overall instructional act being performed and not how it is being performed. For example, orders 
delivered via a command line interface or spoken natural language are both instances of the 
command type. 
 Modalities. The different types of interactions ultimately ground out in particular modalities of 
interaction, with many different modalities, or potentially multiple simultaneous modalities, 
supporting each type. For example, command-line or graphical-user interfaces, are both capable of 
supporting all of the interaction types listed in Table 1. Often, systems that claim to support natural 
interaction leverage modalities commonly used in human-human interaction as the primary modes 
of interaction. For example, the Microsoft Kinect supports gesture- and speech-based modalities. 
A key aspect of modalities from our perspective is that they are cast in terms of what the trainer is 
doing and not necessarily how an action is being detected by an agent. For example, a gesture such 
as waving could be detected using either visual sensing with a camera or gyroscopic sensing with 
a wearable device (e.g., Taylor et al., 2017); in either case, the trainer would be using a gestural 
modality. 
 These four dimensions intentionally map to the four characteristics highlighted in the previous 
section. In particular, in the context of training, supporting a user's goals consists of supporting the 
types of knowledge transference they are trying to achieve. Users' expectations regarding training 
will derive from the social instructional patterns they have experience with. Thus, in order to 
naturally support training interactions, it is important for system designers to be aware of the 
interaction patterns that users expect. Further, users will want to interact in certain ways and system 
designers should be aware of the different types of interactions they want to perform. Finally, for 
each type of interaction, system designers should leverage modalities that draw on users' prior 
experience. 

5.  Analysis of Existing Systems 

To ground the elements of our framework, we next review eight systems2 from the literature and 
identify the knowledge, patterns, types, and modalities used by each. Reviewing all of the machine 
learning systems in the literature is well beyond the scope of this work, so we instead focus on 
highlighting a selection of examples that span the range of patterns from our framework and that 
emphasize user training interactions more so than their underlying machine-learning approach.  
 Our first example, is Google's Teachable Machine.3 This system, which was built to demonstrate 
neural network learning with Google's TensorFlow, leverages the direct instruction pattern. In 
particular, users teach the system image-related concepts (knowledge) by demonstrating (type) 
examples of the concept via the provided webcam-based GUI (modality). While this system 
resembles a more traditional, supervised learning system, it blurs some of the classical machine-
learning distinctions. For example, it is not outwardly clear to users whether the system engages in 
incremental vs. non-incremental learning. From the user perspective, the system appears to be 
                                                
2 We acknowledge that some of these systems may not strictly fit Langley’s (2012) definition of cognitive 

systems, but mapping them to our framework is still informative. 
3 https://teachablemachine.withgoogle.com/ 
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incremental—the user can provide new examples at any time to update the system—but the 
underlying machine learning approach is opaque from a training interaction design perspective and 
somewhat irrelevant (as long as the system is responsive). Similarly, it is not clear whether this 
system is fully supervised; as far as the user is concerned, it could be learning directly from a the 
pixel representation or using more complicated features pre-generated from some form of 
unsupervised learning (e.g., a pre-trained image autoencoder).  
 The Q-Learning agent used in the Sophie's room game (Thomaz, Hoffman, & Breazeal, 2006) 
takes a slightly different perspective on training. Similar to Google's teachable machine, this system 
emphasizes the teaching interactions rather than the underlying machine-learning approach. 
However, this system uses the operant conditioning pattern to acquire cake baking skills 
(knowledge), where the Q-Learning agent demonstrates (type) actions in a simple cooking 
simulation environment (GUI—modality), such as picking or mixing ingredients and users train 
the agent by providing, potentially delayed, rewards (type) via the GUI (modality). One interesting 
aspect of this work is the continuous time nature of the training interactions. In particular, agents 
can take action at any time and users can independently provide rewards at any time (agents do not 
need to wait for user rewards or vice versa). Also, while this system utilizes a reinforcement 
learning mechanism, this work is quite different from the vast majority of reinforcement learning 
systems, such as AlphaGo (Silver et al., 2016), that get their rewards directly from the environment 
(or environment simulator). The Sophie's room work explores the use of a reward signal that comes 
from human trainers rather than an objective signal from the environment. Interestingly, Thomaz 
et al. (2006) found that users often provided reward signals that violate many of the assumptions 
underlying most reinforcement learning algorithms. For example, they found that users often 
provided anticipatory rewards to guide the system towards desired behavior, even though the Q-
learning algorithm treats rewards as feedback on prior, not future, actions.4 It is possible users 
employed anticipatory rewards to compensate for not being able to work the way they wanted (i.e., 
directly show the agent the desired behavior via demonstration). 
 Another, system that supports natural training interactions is SUGILITE (Li, Azaria, & Myers, 
2017). This system learns skill knowledge for performing tasks in arbitrary smartphone apps from 
commands and demonstrations (types) presented in mixed GUI + speech modalities. This differs 
from the prior systems by employing two patterns, direct instruction and programming, to support 
efficient training. Direct instruction starts when users issue a command (type) to the system using 
speech (modality). If the system does not know how to execute the command, the user demonstrates 
(type) the behavior that should be associated with the command and annotates (type) the 
demonstration via a provided GUI (modality) to specify which parts of the demonstration should 
be generalized (i.e., which interface constants should be replaced with variables). If the user issues 
the associated command in the future, then the system demonstrates (type) the associated 
generalized behavior back. In the event that the system exhibits undesirable behavior, the user can 
activate the programming pattern, which allows users to directly manipulate the learned knowledge 
(type) via a GUI (modality); e.g., users might delete a skill or replace a variable in a previously 
learned skill with a specific constant. SUGILITE provides this pattern for more technically 
advanced users, so that they can efficiently teach the system the behavior they want.  
 Another example of a trainable system is Betty's Brain (Leelawong & Biswas, 2008), which was 
designed for use in K12 education. Like SUGILITE, Betty's Brain adopts the programming pattern, 
wherein users teach Betty causal scientific concepts (knowledge) by directly manipulating her 
                                                
4 Users were told this in advance, but they had no technical machine-learning expertise and likely did not 

understand the training implications. 
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knowledge (type) via the provided concept mapping GUI (modality). This system was designed to 
exploit the learning-by-teaching phenomenon. Specifically, students learn causal scientific 
concepts by teaching them to Betty. One interesting aspect of this system is its central use of the 
programming pattern with non-technical K12 users. The computational aspect of the learning 
system enables the use of a pattern that is impossible with human-human learning. Despite the lack 
of a human analog, the younger users are able to efficiently teach Betty using this pattern, showing 
that natural patterns need not draw completely from human experience.  
 Rosie (Kirk & Laird, 2014; Mohan, Mininger, Kirk, & Laird, 2012) is a somewhat different 
example of a cognitive system that supports natural training interactions. Unlike the prior systems, 
Rosie can acquire goal, concept, and skill knowledge from mixed GUI and natural language text 
(modality) interactions with users. This system learns via a variant of the direct instruction pattern. 
Most instances of the direct instruction pattern center around the teacher informing or 
demonstrating to the student, with the trainee requesting clarifications occasionally. Interestingly, 
Rosie inverts this emphasis, with most interaction centering around clarifications.5 
 For example, when learning games (Kirk & Laird, 2014), interaction starts when the teacher 
informs (type) Rosie of a game, e.g., “the game is tic-tac-toe” in natural language text (modality). 
If Rosie does not know the game, then she requests clarifications (type) on characteristics of the 
game to build up a complete description of it. For example, she might say, “I don’t know that game, 
how many players are there?” (text—modality). In response, the user might reply “two” 
(clarification—type, text—modality). Rosie also requests clarifications (type) on legal game 
actions (“please start by teaching me the name of a legal action in the game”) as well as their 
parameters (“what are the verb and parameter arguments associated with this action?”) and 
constrains (“Please list all constraints for this parameter, such as ‘it is red’ or ‘it is on [parameter] 
2’, and then finished”). 
 In another example (Mohan et al., 2012), Rosie uses a similar pattern to acquire concept and goal 
knowledge. In this case, the user might start interaction by issuing a command (type) for Rosie to 
perform, such as “Store the orange object” (text—modality). In response, if Rosie does not know 
the attribute “orange”, then she might ask “what kind of attribute is orange?” (request for 
clarification—type) to which the user might respond “a color” (clarification—type). Rosie also 
supports some mixed-modality interaction. In particular, she might say “I don’t see an orange 
object. Please teach me to recognize one” (request for clarification—type), to which the user might 
click on a GUI object and say “this is orange” (clarification—type, mixed GUI + text—modality). 
 In general, Rosie uses this clarification-guided approach to progressively transfer and ground 
concept, skill, and goal knowledge. It is worth noting that although Rosie supports interactive 
training, we do not classify her training paradigm as apprentice learning because she never requests 
or receives rewards on her own task-related decision making. One interesting aspect of this work 
is its almost universal use of a natural language text modality. From a user perspective, it seems 
like it would be difficult to transfer skill knowledge using this modality because tacit knowledge, 
such as skills or experiences, are noted for being challenging for people to textually or verbally 
articulate (Polanyi, 1966; Schön, 1983). In contrast, the text modality seems well suited for 
transferring concept and goal knowledge, which should be easier for people to verbally articulate. 
In either case, the alignment between modality and the type of knowledge being transferred should 
be investigated in future work.   
                                                
5 The authors debated whether the direct instruction label is still appropriate with this inversion and ultimately 

decided it was because Rosie’s adopts more conventional direct instruction behavior when she already has 
ample existing knowledge and does not require as much clarification. 
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 Another related cognitive system is the Companion Architecture (Hinrichs & Forbus, 2014). This 
system also uses natural language text for interaction and leverages a direct instruction pattern. 
However, it differs in some key respects. Specifically, it utilizes a multi-modal text + sketch 
interface (modality) and the system only acquires concepts (knowledge). In this system, users 
inform (type) the system of different concepts via text statements and sketch demonstrations and 
the system acknowledges (type) that it correctly interpreted these actions. For example, a user might 
inform the system that “Tic-Tac-Toe is a 2 player game” or "X is a player <draws X in the sketch 
interface>”, to which the system would respond “OK” in both cases. Once the system has acquired 
these concepts, the system compiles them into the Game Definition Language (Genesereth & 
Thielscher, 2014), a representation it leverages to actually play games with the user.  
 Like Betty's Brain, SimStudent and the Apprentice Learning Architecture were built to support 
K12 education. These systems employ the apprentice learning pattern to support a wide range of 
applications, such as modeling students learning in tutors (Li, Matsuda, Cohen, & Koedinger, 2010; 
Maclellan et al., 2016; Matsuda, Lee, Cohen, & Koedinger, 2009), studying the learning-by-
teaching effect (Matsuda, Yarzebinski, Keiser, Cohen, & Koedinger, 2011), and supporting 
efficient tutor authoring (Li, Stampfer, Cohen, & Koedinger, 2013; MacLellan, Koedinger, & 
Matsuda, 2014; Matsuda, Cohen, & Koedinger, 2014). Users train an agent by presenting it with 
particular problems to solve—implicit commands (type)—within a tutor GUI (modality). When an 
agent lacks knowledge of how to solve the problem it requests a demonstration (type) from the 
user by popping up a GUI dialog message (modality). The user then demonstrates (type) a problem-
solving step directly in the tutor GUI (modality). From these demonstrations the agent learns new 
problem-solving skills (knowledge) and, in the future, demonstrates (type) steps on similar 
problems for the user. After every agent demonstration, the system requests a reward (type) from 
the user, who provides correctness feedback (reward—type) via the provided GUI (modality). This 
system is effectively an active learning system (Settles, 2012) that interactively requests feedback 
and examples from users when it needs them. 
 The final system that we reviewed was PLOW (Allen et al., 2007). Although this system claims 
to be a collaborative problem-solving system, the system actually employs the apprentice learning 
pattern. Using this pattern, the system acquires skills (knowledge) from mixed text + GUI 
(modality) interactions. Users start interacting with the system by issuing a command (type) via 
natural language text (modality), such as asking the system to “list all the hotels within 20 miles.” 
If the system already has the appropriate knowledge for the task, then it demonstrates (type) 
behavior directly in the task GUI (modality); e.g., it looks up and lists the hotels within 20 miles. 
If the demonstrations are incorrect than the user provides negative feedback, or reward (type), to 
the system by telling it “this is wrong” (text—modality). If the system does not know what to do, 
then the user provides a demonstration (type) of the desired behavior, such as looking up the 
appropriate list of hotels in the provided web-browser GUI (modality) and an annotation (type) on 
the demonstration by specifying, “let me show you how to list the hotels within 20 miles” (text—
modality). Additionally, when the user provides demonstrations, the system can also request 
clarifications (type) related to the demonstrations. 
 Allen et al. (2007) performed preliminary user testing where they compared PLOW to variants 
that used different training interaction patterns. Specifically, one of the systems learned by 
passively observing users behavior within the GUI (the passive learning pattern), one had a 
sophisticated GUI for authoring task macros (the programming pattern), and one had users describe 
skills to the system completely in natural language (the direct instruction pattern). Allen et al. found 
that users preferred the base system to its variants and that it performed better on some initial 
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usability metrics. Although not conclusive, these preliminary findings suggest that the apprentice 
learning pattern (used by PLOW) may be more appropriate for skill learning than the passive 
learning or direct instruction patterns. 

6.  Discussion and Future Work 

In proposing this initial framework, we aim to achieve three objectives. First, we attempt to 
highlight what we view as a key opportunity within cognitive systems research: to better understand 
the space of training interaction and develop cognitive systems that are natural and efficient for 
users to teach and interact with. Recent research efforts, such as Rosie (Kirk & Laird, 2014), the 
Companion Architecture (Hinrichs & Forbus, 2014), and the Apprentice Learning Architecture 
(Maclellan et al., 2016), have begun exploring different combinations of patterns, types, and 
modalities to support training interactions with end users. Each of these systems represent particular 
choices across the dimensions of our framework. To reach a more complete understanding of 
training interaction design, researchers should explore additional approaches and new combinations 
of approaches in order to explore the space more broadly and ultimately direct work toward 
designing more natural means for training cognitive systems. 
 Second, organizing training interactions along an orthogonal set of dimensions enables a modular 
approach to the challenge of building cognitive systems to support natural training interactions. 
Individual researchers or developers need not contend with the whole problem and can instead 
focus on addressing subproblems. For example, one team of researchers might investigate which 
patterns are best for acquiring skills, whereas another team might investigate which patterns are 
best for acquiring concepts. Because these decisions are orthogonal, both teams can benefit from 
each other's work and integrate their findings within the common structure of the framework to 
support the development of systems that can naturally learn both skills and concepts. Thus, the 
framework supports the unification of independent research efforts, even if these efforts do not 
explicitly describe their work within this framework. 
 Finally, towards the goal of actually building cognitive systems that people can naturally train, 
we intend our framework to provide a language for formulating scientific hypotheses about how 
such systems should interact with users to best achieve naturalness. Much of the existing work 
implicitly assumes that choosing natural approaches for only one of the components of the 
framework (patterns, types, or modalities) establishes the overall naturalness of a system. For 
example, Hinrichs and Forbus (2014) emphasize the use of multiple natural modalities, such as text 
and sketching, whereas MacLellan et al. (2016) emphasize the use of a natural pattern. Central to 
our framework, however, is the hypothesis that different combinations of patterns, types, and 
modalities of interaction are better suited for updating different kinds of knowledge. 
 Thus, we believe that systems that are natural for users to teach will not only support a wide 
range of patterns, types, and modalities, but flexibly choose the appropriate combination based on 
the type of knowledge being communicated, the trainer’s preference, and potentially other 
contextual factors. There is evidence that learning in humans follows a similar logic, in that 
different kinds of knowledge are best taught by different forms of instruction (Koedinger et al., 
2012). Given that an artificial intelligence need not represent a natural system, there is no inherent 
reason to transfer this logic (Simon, 1983). However, if we want to support humans in naturally 
training such systems, then it becomes important to understand these relationships and how they 
might impact different kinds of training. In conclusion, it is our hope that this framework will focus 
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attention on this issue, provide a language for talking about training interactions and their 
naturalness, and guide future research on this exciting frontier of personal cognitive systems. 
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